Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Radiat Phys Chem Oxf Engl 1993 ; 204: 110678, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2221275

ABSTRACT

The recent COVID-19 pandemic spread across the globe has raised the concern about the possible transmission of viruses through food packaging material during domestic and international trade. Therefore, mitigation strategies are needed to address these safety issues. Preliminary in-silico study showed that interactions between food packaging material and viral surface proteins were possibly hydrophobic in nature with most favourable interaction having a binding free energy of -5.24 kcal/mol. Since these interactions can cause viruses to adsorb on the food packets and get transmitted during supply chain, it is necessary to inactivate the viruses. In this context, efficacy of gamma irradiation in inactivating the viruses on the food packaging material was assessed. For this simulation study P1 (virulent) bacteriophage of E. coli was used as a model system. Gamma irradiation of food packets at an absorbed dose >8 kGy was found to completely inactivate the infectivity of P1(virulent) bacteriophage when co-cultured with E. coli host and assayed for viral plaque formation. Reduction in infectivity of P1(vir) phage was more prominent at ambient temperature (25 ± 2 °C) as compared to cold temperature (6 ± 2 °C) when assayed after storage (one week). Gamma irradiation (2 kGy) completely inactivated the virus particles on food packets when stored for 1 week at both the above temperatures. It is thus proposed that gamma irradiation (2 kGy) can possibly be integrated as a final treatment of the packaged food products to rule out the possibility of viral transmission. However, the efficacy of radiation processing against different pathogenic viruses needs to be determined prior to actual commercial deployment.

2.
Radiation physics and chemistry (Oxford, England : 1993) ; 2022.
Article in English | EuropePMC | ID: covidwho-2126124

ABSTRACT

The recent COVID-19 pandemic spread across the globe has raised the concern about the possible transmission of viruses through food packaging material during domestic and international trade. Therefore, mitigation strategies are needed to address these safety issues. Preliminary in-silico study showed that interactions between food packaging material and viral surface proteins were possibly hydrophobic in nature with most favourable interaction having a binding free energy of −5.24 kcal/mol. Since these interactions can cause viruses to adsorb on the food packets and get transmitted during supply chain, it is necessary to inactivate the viruses. In this context, efficacy of gamma irradiation in inactivating the viruses on the food packaging material was assessed. For this simulation study P1 (virulent) bacteriophage of E. coli was used as a model system. Gamma irradiation of food packets at an absorbed dose >8 kGy was found to completely inactivate the infectivity of P1(virulent) bacteriophage when co-cultured with E. coli host and assayed for viral plaque formation. Reduction in infectivity of P1(vir) phage was more prominent at ambient temperature(25 ± 2 °C) as compared to cold temperature(6 ± 2 °C) when assayed after storage (one week). Gamma irradiation (2 kGy) completely inactivated the virus particles on food packets when stored for 1 week at both the above temperatures. It is thus proposed that gamma irradiation (2 kGy) can possibly be integrated as a final treatment of the packaged food products to rule out the possibility of viral transmission. However, the efficacy of radiation processing against different pathogenic viruses needs to be determined prior to actual commercial deployment.

3.
J Ayurveda Integr Med ; 12(2): 312-319, 2021.
Article in English | MEDLINE | ID: covidwho-1009609

ABSTRACT

BACKGROUND: Viruses cause many life threatening human diseases. Recently, COVID-19 pandemic has challenged the health care systems worldwide. As a disease preventive approach and to bring relief to the severity of the symptoms, a infusion termed as Bhabha Anti-Viral Infusion-23 ('BhAVI-23') was conceptualized and formulated which comprised of 23 selected spices and herbals. OBJECTIVE: The present study was conducted to assess the in vitro antiviral potential of the formulation, BhaAVI-23. MATERIAL AND METHODS: The in-vitro anti-viral potential of BhAVI-23 was assessed through inhibition of HIV1 reverse transcriptase (RT) as well as through a novel P1 (virulent) bacteriphage based screening assay system. Anti-diabetic potential was assessed by non-enzymatic glycosylation of haemoglobin and the bioactive volatile components were detected through headspace gas chromatography followed by molecular docking analysis. RESULTS: The infusion displayed prominent anti-viral activity as evident from significant (57%) inhibition of the HIV1-RT as well as through reduction in the infectivity of P1 (virulent) bacteriophage. The infusion also exerted profound protection (∼64%) to non-enzymatic glycosylation of haemoglobin. Headspace gas chromatography and mass spectrometric analysis confirmed the presence of at least 47 major compounds. Docking analysis indicated possible interaction of α-pinene and eugenol with SARS-CoV spike protein. CONCLUSION: This 'BhAVI-23' infusion displayed prominent in-vitro anti-viral and anti-diabetic potential in different model systems. These attributes have relevance as diabetic patients are more prone to COVID-19 morbidity. 'BhAVI-23' opens the avenue for its potential inclusion as a supportive health care system upon due regulatory approval during the current pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL